内壁承受的膨胀压力达到上限,而是火箭发动机增压燃烧室的压力达到上限。
现代火箭发动机燃烧室的压力和温度已经达到现有材料的极限无法再提高,除非材料发生突破,不然就只能从设计上下功夫,但火箭发动机的设计构造就这么简单,这方面的优化空间并不大。”
“这是我们目前火箭航天发动机的瓶颈,是材料的瓶颈,但我之前的两份方案不一样。
第一种是利用推进工质的热膨胀效应,借助核聚变反应堆的超高温废气和热流进行加热产生的膨胀压力推动做功。
因为减少了增压燃烧环节直接就进行膨胀做功,下方的钟形或者锥形的喷嘴也是由小变大,而不是由大变小的拉瓦尔喷嘴结构,所以材料压力和工质消耗降低很多很多。
第二种我们把超小型核弹爆炸的能量用来加热固态气体,把固态的气体瞬时加热到等离子态,利用磁场对等离子体的束缚和阻拦就可以避开材料承受极限,把核弹爆炸的冲击力和气体的膨胀压力转换成推力。
当然第二种方案因为需要构建高强度磁场的原因,能量效率并不算很好,但在拥有核聚变反应堆的前提下,我想能量效率并不算问题。”
看着卫鸿把当前航天发动机