而西洋几何三角学中,有了三角函数概念,所以对于勾股测量,有新的应用,那就是利用夹角,然后带入三角函数中的正弦、余弦以及正切函数来反推。
这种测量方法,其原理就是用两个间隔已知距离的千里镜,同时观察物体甲,此时两个望远镜之间的不同方位角,根据三角函数便可计算出物体甲的距离。
具体应用,就是把两个望远镜固定在一根横杆上,一个望远镜与横杆水平垂直并且固定不动(左端),另一个望远镜可以水平转动(右端),而横杆本身也很水平转动。
观察物体甲时,先将左端望远镜视野里的准星对准物体甲,然后固定好横杆,接着转动右端望远镜,使之视野里的准星对准物体甲(两镜准星重合)。
此时两个望远镜和物体甲之间形成一个直角三角形,两个望远镜之间的距离乙,可以视为直角三角形的短直角边,而左端望远镜与物体甲的距离丙,就是直角三角形的长直角边。
右端望远镜与横杆的夹角丁,是已知的,而其邻边乙也是已知的(横杆的长度),那么根据丁的角度值,查出对应的三角函数值,再带入其邻边乙,可以反推丙的长度,如此一来就完成了测距。
依此原理,活动的望远镜,