站在计算机、而非人类的立场上,描述客观世界,进而从这一体系出发,可以用传统AI的诸多算法,实现诸多功能。
这一体系,早在诞生之初,就引起IT业界的浓厚兴趣,但也有很多业内人士不以为然。
反对者的一大武器,便是FSCIM体系的低效,这种低效,并不是体系架构本身多么拙劣,而是由于FSCIM的开发初衷:
描绘计算机眼中的世界,进而,为计算机提供一种内禀的通用“语言”。
这样的体系,显而易见,并无人类对客观世界的既有认识,以其为基础开发的程序,一般而言,也几乎无法借助人类已有的科学技术成果,去加快处理的速度。
这是什么意思呢,譬如说,物流网络的运力规划问题,用AI解决的一般思路,是挂载深度学习网络,并根据问题的性质给定大量边界条件,AI上线运行后,很快就能根据初始条件与运行数据,逐步优化策略,给出较好的解决方案。
旧时代的IT领域中,人工智能,往往就是应用在这样的场合。
这种“自动化、智能化”,实质上仍然是一种低级重复劳动的替代,是用人类智慧,分割、定义问题,给出算法,然后利用计算机的速度,迅速做